US 2009/0205018 Al

[0074] Obligations

[0075] An obligation, or event pattern/response relation,
defines a set of conditions and methods under which policy
state data is dynamically obligated to change. An event pat-
tern/response relation is a pair (ep, r) (usually denoted ep=r),
where ep is an event pattern and r is a sequence of primitive
administrative operations, called a response. The event pat-
tern specifies conditions related to a process’ successful
execution of an operation on an object, using parameters like
the user of the process, the operation executed, and the con-
tainer(s) in which the object is included. The set of obligations
is denoted as EP-R in FIG. 2.

[0076] A successtul completion of an operation on an
object may trigger an event. The context of the event com-
prises the process identifier and its user identity, the opera-
tion, the object on which the operation was performed, the
object’s containers, etc. The system 20 starts processing the
event by determining the event patterns in the entire set of
obligations that are matched by the event. The match is per-
formed by checking whether the event context satisfies the
conditions specified in the event pattern. For all successful
matches, the system 20 executes the response associated with
the matched pattern. Note that the possible formal parameters
of'the administrative operations comprised in the response are
replaced by the appropriate values extracted from the event
context. Responses are obligations performed by the system
20, and as such, their execution is not predicated on permis-
sions.

[0077] The system 20 also includes a fixed set of functions
that include function foruser authentication, session manage-
ment, presentation of accessible objects, reference mediation,
and event-response processing.

[0078]

[0079] A user interaction with the system 20 begins with
the user’s authentication. Although authentication is included
among the functions, the system’s 20 specification does not
dictate the method (e.g., password, tokens) by which authen-
tication is performed. Upon authentication, a session is cre-
ated where all processes included in the session are associated
with the authenticated user.

[0080] A process may issue an access request on behalf of
its user, or independent of its user. A process access request
may be denoted by <ops, 0>, where pEP, ops < OP and 0o€0.
[0081] Personal Object System (POS)

[0082] Following user authentication, the user may be pre-
sented with a Personal Object System (POS). The POS is a
graphical presentation of the set of objects that are currently
accessible to the user. The graphical presentation organizes
accessible objects into the set of containers (object attributes)
to which the objects belong and which are also accessible by
the user. Remembering that objects are also object containers,
an object container is accessible to a user if that user is
authorized to perform the same operation op on the objects
contained in that container within each policy class that con-
tainer belongs to. As illustrated in FIG. 6, an object container
(or attribute) represented as oa €0A is accessible to a user
u€U if JopeOP, such that ¥YpcEPC such that oa—"*pc,
JuacUA, Fopse2?”, Foa'©OA, such that opSops,
u—*ua—ops—oa’, ua—"pc, and oa—*oa'—="pc. FIG. 7
illustrates a representation of alice’s POS with respect to FIG.
3.

Authentication

Aug. 13,2009

[0083] The personal object system of a user u, denoted by
POS,, is a directed graph (V, E) where the node set V is
defined as follows:

[0084] 1. An object attribute oa is in V if and only if oa is in
a policy class and oa is accessible to user u.

[0085] 2. A policy class pcisinV if and only if pc contains
an object attribute accessible to u.

[0086] 3. No other node is in V.
[0087] and the arc set E is defined as follows:
[0088] 4. Ifpolicy class pc and object attribute oa are nodes

in 'V, there is an arc from oa to pc if and only if 0a is in pc (in
the original graph) and there is no other object attribute in V
on a path from oa to pc (in the original graph).

[0089] 5. If object attributes oa, and oa, are nodes in V,
there is an arc from oa, to oa, ifand only if there is a path from
0a, to oa, (in the original graph) and there is no other object
attribute in Von a path from oa, to oa, (in the original graph).

[0090]
[0091] Reference Mediation

[0092] Either through the use of the POS or some other
means of referencing objects, a user may issue a request to
perform a set of operations on a set of objects, through a
process. A process may also issue an access request without
the intervention of a user. The server module 28 either grants
ordenies a process access request. A process access request to
perform an operation op on an object o, with p being the
process identifier, is granted if and only if there exists a
permission (u, op, o) where u=process_user(p), and (op, o) is
not denied (through prohibitions) for either p oru. We refer to
this function of granting or denying a process access request
as reference mediation.

[0093] Given process pEP, user u=process_user(p), opera-

tion op€EOP, and object o€0, reference_mediation(<op,
def’

0>, )=grant<>

6. No other arc is in E.

[0094] 1. (u, op, 0) is a permission A

[0095] 2. V<u, ops, 0s> € UDENY, op € ops A0 € 08) A
[0096] 3. V<p, ops, os> € PDENY, «op € ops Ao € 0s).
[0097] With respect to the definition of the capabilities and

permissions in the system 20, the reference mediation func-
tion grants a process p the permission to execute a request
<op, 0>, if and only if, in each policy class that contains the
object o, the pair (op, 0) is a capability of an attribute of user
u=process_user(p), and in addition, this capability is not pro-
hibited by a deny relation.

[0098]

[0099] Underlying resource management systems, on
which access control depends, provide facilities for inter-
process communication, and as such offer opportunities to
“leak” data in a manner that may undermine the policy. For
example, operating systems provide mechanisms for facili-
tating communications and data sharing between applica-
tions. These mechanisms include but are not limited to clip-
boards, pipes, sockets, remote procedure calls, and messages.
They all conform to a common abstraction: one process pro-
duces/creates data and inserts it into the mechanism’s physi-
cal medium; the other process consumes/reads the data from
the physical medium. A synchronization mechanism must
also exist.

Transferring Data Between Processes



